Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
researchsquare; 2020.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-105507.v1

ABSTRACT

Background There is no consensus as to when and how to reopen schools during the coronavirus disease 2019 (COVID-19) pandemic. This study aimed to evaluate the safety of reopening universities and colleges using a combined strategy in China.Methods This cross-sectional study included 13,116 staffs and postgraduate students who have returned to the four campuses of the University of Science and Technology of China from 17 February (students returned from 12 May) to 2 July 2020. The returning to school was guided by a combined strategy including use of personal protective equipment, management of transportation, serological and nucleic acid tests for COVID-19, quarantine, and restrictions in and out of campus. Epidemiology history and COVID-19 related symptoms (fever, cough, and dyspnoea) were recorded in a subset of participants using an online questionnaire.Results Among 13,116 participants, 4067 tested for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nucleic acid and no positive results were identified. Of 9049 participants who chose to conduct antibody tests, 28 (0.3%) tested positive but no one was confirmed by the additional viral nucleic acid tests. Online questionnaires were collected from 5741 participants (mean 25.1 years, 35% female). High-risk exposures and COVID-19 related symptoms were reported in 8.3% and 7.4% of participants, respectively. Comorbidities (hypertension, diabetes, chronic pulmonary disease, and chronic kidney disease) were rare (0.2%-1.5%). Conclusions Using a combined strategy for COVID-19 prevention and control, safely reopening of universities and colleges in low-risk regions is possible and laboratory screening for SARS-CoV-2 infection may not be necessary. Further studies need to cautiously evaluate the safety of reopening schools, if any, in the middle- and high-risk regions.


Subject(s)
Pulmonary Disease, Chronic Obstructive , Dyspnea , Fever , Severe Acute Respiratory Syndrome , Cough , Diabetes Mellitus , Hypertension , COVID-19 , Renal Insufficiency, Chronic
2.
ssrn; 2020.
Preprint in English | PREPRINT-SSRN | ID: ppzbmed-10.2139.ssrn.3696819

ABSTRACT

Background: There is no consensus as to when and how to reopen schools during the coronavirus disease 2019 (COVID-19) pandemic. This study aimed to evaluate the safety of reopening universities and colleges using a combined strategy in China.Methods: This cross-sectional study included 13,116 staffs and postgraduate students who have returned to the four campuses of the University of Science and Technology of China from 17 February (students returned from 12 May) to 2 July 2020. The returning to school was guided by a combined strategy including use of personal protective equipment, management of transportation, serological and nucleic acid tests for COVID-19, quarantine, and restrictions in and out of campus. Epidemiology history and COVID-19 related symptoms (fever, cough, and dyspnoea) were recorded in a subset of participants using an online questionnaire.Findings: Among 13,116 participants, 4067 tested for SARS-CoV-2 nucleic acid and no positive results were identified. Of 9049 participants who chose to conduct antibody tests, 28 (0.3%) tested positive but no one was confirmed by the additional viral nucleic acid tests. Online questionnaires were collected from 5741 participants (mean 25.1 years, 35% female). High-risk exposures and COVID-19 related symptoms were reported in 8.3% and 7.4% of participants, respectively. Comorbidities (hypertension, diabetes, chronic pulmonary disease, and chronic kidney disease) were rare (0.2%-1.5%). Interpretation: Using a combined strategy for COVID-19 prevention and control, safely reopening of universities and colleges in low-risk regions is possible and laboratory screening for SARS-CoV-2 infection may not be necessary. Further studies need to cautiously evaluate the safety of reopening schools, if any, in the middle- and high-risk regions.Funding: This research received grants from the Fundamental Research Funds for the Central Universities (Grant number: YD9110002008, YD9110004001, and YD9110002002).Declaration of Interests: The authors declare no competing interests.Ethics Approval Statement: All participants who participated the online survey provided informed consent. Informed consent was waived for other participants as this study did not collect their individual data. This study was approved by the Research Ethics Commissions of the First Affiliated Hospital of USTC.


Subject(s)
COVID-19 , Kidney Diseases , Fever , Hypertension
3.
researchsquare; 2020.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-74067.v1

ABSTRACT

Background Coronavirus disease 2019 (COVID-19), caused by SARS-CoV-2, is posing a serious threat to global public health. Reverse transcriptase real-time quantitative polymerase chain reaction (qRT-PCR) is widely used as the gold standard for clinical detection of SARS-CoV-2. Due to technical limitations, the reported positive rates of qRT-PCR assay of throat swab samples vary from 30–60%. Therefore, the evaluation of alternative strategies to overcome the limitations of qRT-PCR is required. A previous study reported that one-step nested (OSN)-qRT-PCR revealed better suitability for detecting SARS-CoV-2. However, information on the analytical performance of OSN-qRT-PCR is insufficient.Method: In this study, we aimed to analyze OSN-qRT-PCR by comparing it with droplet digital PCR (ddPCR) and qRT-PCR by using a dilution series of SARS-CoV-2 pseudoviral RNA and a quality assessment panel. The clinical performance of OSN-qRT-PCR was also validated and compared with ddPCR and qRT-PCR using specimens from COVID-19 patients.Result The LoD (copies/ml) of qRT-PCR, ddPCR, and OSN-qRT-PCR were 520.1 (95% CI): 363.23–1145.69) for ORF1ab and 528.1 (95% CI: 347.7–1248.7) for N, 401.8 (95% CI: 284.8–938.3) for ORF1ab and 336.8 (95% CI: 244.6–792.5) for N, and 194.74 (95% CI: 139.7–430.9) for ORF1ab and 189.1 (95% CI: 130.9–433.9) for N, respectively. Of the 34 clinical samples from COVID-19 patients, the positive rates of OSN-qRT-PCR, ddPCR, and qRT-PCR were 82.35% (28/34), 67.65% (23/34), and 58.82% (20/34), respectively.Conclusion In conclusion, the highly sensitive and specific OSN-qRT-PCR assay is superior to ddPCR and qRT-PCR assays, showing great potential as a technique for detection of SARS-CoV-2 in patients with low viral loads.


Subject(s)
COVID-19
4.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.08.27.20182832

ABSTRACT

Coronavirus disease 2019 (COVID-19), caused by SARS-CoV-2, is posing a serious threat to global public health. Reverse transcriptase real-time quantitative polymerase chain reaction (qRT-PCR) is widely used as the gold standard for clinical detection of SARS-CoV-2. Due to technical limitations, the reported positive rates of qRT-PCR assay of throat swab samples vary from 30%-60%. Therefore, the evaluation of alternative strategies to overcome the limitations of qRT-PCR is required. A previous study reported that one-step nested (OSN)-qRT-PCR revealed better suitability for detecting SARS-CoV-2. However, information on the analytical performance of OSN-qRT-PCR is insufficient. In this study, we aimed to analyze OSN-qRT-PCR by comparing it with droplet digital PCR (ddPCR) and qRT-PCR by using a dilution series of SARS-CoV-2 pseudoviral RNA and a quality assessment panel. The clinical performance of OSN-qRT-PCR was also validated and compared with ddPCR and qRT-PCR using specimens from COVID-19 patients. The LoD (copies/ml) of qRT-PCR, ddPCR, and OSN-qRT-PCR were 520.1 (95% CI): 363.23-1145.69) for ORF1ab and 528.1 (95% CI: 347.7-1248.7) for N, 401.8 (95% CI: 284.8-938.3) for ORF1ab and 336.8 (95% CI: 244.6-792.5) for N, and 194.74 (95% CI: 139.7-430.9) for ORF1ab and 189.1 (95% CI: 130.9-433.9) for N, respectively. Of the 34 clinical samples from COVID-19 patients, the positive rates of OSN-qRT-PCR, ddPCR, and qRT-PCR were 82.35% (28/34), 67.65% (23/34), and 58.82% (20/34), respectively. In conclusion, the highly sensitive and specific OSN-qRT-PCR assay is superior to ddPCR and qRT-PCR assays, showing great potential as a technique for detection of SARS-CoV-2 in patients with low viral loads.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL